MSM1201 - Advanced Topology

HNGU M.SC. MATHEMATICS SEMESTER - II 

MSM1201 – ADVANCED TOPOLOGY

Unit 1

  • Countability Axioms: First countable space, 
  • Second countable space, 
  • Separable space,
  • Lindeloff space

Unit 2

  • Separation axioms- Hausdorff space, 
  • Regular space, normal space, 
  • Urysohn’s lemma,
  • Completely regular space,
  • Tietze extension theorem.

Unit 3

  • Imbedding of Manifolds, 
  • Partition of unity, 
  • Tychonoff theorem (statement only), 
  • TheStone-cech Compactifications and uniqueness.

Unit 4

  • Complete metric space,
  • Compactness in metric spaces,
  • Ascoli’s theorem, Bair spaces,
  • Baire category theorem.


Download Reference Books:

The course is covered by Topology – J. R. Munkres, Prentice – Hall of India, 1992.

1. General Topology – S. Willard, Addison Wesley, 1970.

2. Topology – J. Dugundji, Prentice – Hall of India, 1975.

3. Aspects of Topology – C. O. Christonson and W. l. Voxman, Marcel Dekker Inc, 1977.

4. General Topology – J. L. Kelley, D. Van Nostraml, 1950.


OLD Question Paper
May/June - 2012 Download
Nov/Dec - 2012 Download
Nov/Dec - 2016 Download
Nov/Dec - 2017 Download
May/June - 2018 Download
March/April - 2019 Download

No comments:

Post a Comment